243 research outputs found

    A Fast General-Purpose Clustering Algorithm Based on FPGAs for High-Throughput Data Processing

    Full text link
    We present a fast general-purpose algorithm for high-throughput clustering of data "with a two dimensional organization". The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data has high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or Super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In fact, its core does not specifically rely on the kind of data or detector it is working for, while the second step can and should be tailored for a given application. Applications can thus be foreseen to other detectors and other scientific fields ranging from HEP calorimeters to medical imaging. An additional advantage of this two steps approach is that the typical clustering related calculations (second step) are separated from the combinatorial complications of clustering. This separation simplifies the design of the second step and it enables it to perform sophisticated calculations achieving online-quality in online applications. The algorithm is general purpose in the sense that only minimal assumptions on the kind of clustering to be performed are made.Comment: 11th Frontier Detectors For Frontier Physics conference (2009

    An automated system for lung nodule detection in low-dose computed tomography

    Full text link
    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.Comment: 9 pages, 9 figures; Proceedings of the SPIE Medical Imaging Conference, 17-22 February 2007, San Diego, California, USA, Vol. 6514, 65143

    An automatic system to discriminate malignant from benign massive lesions in mammograms

    Get PDF
    Evaluating the degree of malignancy of a massive lesion on the basis of the mere visual analysis of the mammogram is a non-trivial task. We developed a semi-automated system for massive-lesion characterization with the aim to support the radiological diagnosis. A dataset of 226 masses has been used in the present analysis. The system performances have been evaluated in terms of the area under the ROC curve, obtaining A_z=0.80+-0.04.Comment: 4 pages, 2 figure; Proceedings of the Frontier Science 2005, 4th International Conference on Frontier Science, 12-17 September, 2005, Milano, Ital

    Computer-aided detection of pulmonary nodules in low-dose CT

    Full text link
    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical CT images with 1.25 mm slice thickness is being developed in the framework of the INFN-supported MAGIC-5 Italian project. The basic modules of our lung-CAD system, a dot enhancement filter for nodule candidate selection and a voxel-based neural classifier for false-positive finding reduction, are described. Preliminary results obtained on the so-far collected database of lung CT scans are discussed.Comment: 3 pages, 4 figures; Proceedings of the CompIMAGE - International Symposium on Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications, 20-21 Oct. 2006, Coimbra, Portuga

    A scalable system for microcalcification cluster automated detection in a distributed mammographic database

    Get PDF
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different datasets of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report and discuss the system performances on different datasets of mammograms and the status of the GRID-enabled CADe analysis.Comment: 6 pages, 4 figures; Proceedings of the IEEE NNS and MIC Conference, October 23-29, 2005, Puerto Ric

    A Theoretical Prediction of the Bs-Meson Lifetime Difference

    Get PDF
    We present the results of a quenched lattice calculation of the operator matrix elements relevant for predicting the Bs width difference. Our main result is (\Delta\Gamma_Bs/\Gamma_Bs)= (4.7 +/- 1.5 +/- 1.6) 10^(-2), obtained from the ratio of matrix elements, R(m_b)=/<\bar B_s^0|Q_L|B_s^0>=-0.93(3)^(+0.00)_(-0.01). R(m_b) was evaluated from the two relevant B-parameters, B_S^{MSbar}(m_b)=0.86(2)^(+0.02)_(-0.03) and B_Bs^{MSbar}(m_b) = 0.91(3)^(+0.00)_(-0.06), which we computed in our simulation.Comment: 21 pages, 7 PostScript figure

    A scalable Computer-Aided Detection system for microcalcification cluster identification in a pan-European distributed database of mammograms

    Full text link
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different kinds of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report the FROC analyses of the CADe system performances on three different dataset of mammograms, i.e. images of the CALMA INFN-founded database collected in the Italian National screening program, the MIAS database and the so-far collected MammoGrid images. The sensitivity values of 88% at a rate of 2.15 false positive findings per image (FP/im), 88% with 2.18 FP/im and 87% with 5.7 FP/im have been obtained on the CALMA, MIAS and MammoGrid database respectively.Comment: 6 pages, 5 figures; Proceedings of the ITBS 2005, 3rd International Conference on Imaging Technologies in Biomedical Sciences, 25-28 September 2005, Milos Island, Greec

    A Computer-Aided Detection system for lung nodules in CT images

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality in developed countries. To support radiologists in the identification of early-stage lung cancers, we propose a Computer-Aided Detection (CAD) system, composed by two different procedures: VBNACADI devoted to the identification of small nodules embedded in the lung parenchyma (internal nodules) and VBNACADJP devoted the identification of nodules originating on the pleura surface (juxta-pleural nodules). The CAD system has been developed and tested on a dataset of low-dose and thin-slice CT scans collected in the framework of the first Italian randomized and controlled screening trial (ITALUNG-CT). This work has been carried out in the framework of MAGIC-5 (Medical Application on a Grid Infrastructure Connection), an Italian collaboration funded by Istituto Nazionale di Fisica Nucleare (INFN) and Ministero dell’Universit`a e della Ricerca (MIUR), which aims at developing models and algorithms for a distributed analysis of biomedical images, by making use of the GRID services

    Effect of data harmonization of multicentric dataset in ASD/TD classification

    Get PDF
    Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from multiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach (external harmonization) in which harmonization is performed before train/test split, with an harmonization calculated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized data and harmonization using only the train set showed similar results, for both structural and connectivity features. We also showed that the higher performances of the external harmonization are not due to larger size of the sample for the estimation of the model and hence these improved performance with the entire dataset may be ascribed to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using the train set
    • …
    corecore